If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+92X-1092=0
a = 1; b = 92; c = -1092;
Δ = b2-4ac
Δ = 922-4·1·(-1092)
Δ = 12832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12832}=\sqrt{16*802}=\sqrt{16}*\sqrt{802}=4\sqrt{802}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(92)-4\sqrt{802}}{2*1}=\frac{-92-4\sqrt{802}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(92)+4\sqrt{802}}{2*1}=\frac{-92+4\sqrt{802}}{2} $
| 0=560x-x^2 | | 15=y=6=2y=0 | | (3x+60)+(2x+50)=180 | | 3xx90=57 | | 7x+20=4x+10 | | 4x+17+x+5x=180 | | 3(x-2)-5x=3(2x-6) | | y=5.1-4 | | 40-16=4(x-7) | | z-320=143 | | 74-13x=34 | | 6.12/2=n | | 5t=t+0.052 | | x=2.9x785 | | 6s2–13s+5=0 | | 16z2+33z+2=0 | | 6x-20=112 | | X^2-100x-2,4=0 | | 4y=14-2y=4 | | 4x+8=(5x)+2 | | 114/3-1/3=b | | x-1/4=12/x+1 | | t/40=90 | | -4x-(2x+2)=4 | | 44=6x-1=9x | | 90+82+81+2(x)/5=86 | | 90=2x+45 | | 2x+11/3=4 | | 45=2x+45 | | 6(3m+12)=-15 | | 3x+10=370 | | 1.2-0.6a=-1.2+0.2a |